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The Bondi-Metzner—Sachs group B is the common asymptotic group of all
asymptotically flat (lorentzian) space-times, and is the best candidate for the
universal symmetry group of general relativity. However, in quantum gravity,
complexified or euclidean versions of general relativity are frequently considered,
and the question arises: Are there similar symmetry groups for these versions of the
theory ? In this paper it is shown that there are such analogues of B, and a variety
of further ones, either real in any signature, or complex. The relationships between
these various groups are described. Irreducible unitary representations (irs) of the
complexification CB of B itself are analysed. It is proved that all induced 1rs of CB
arise from 1Rrs of compact ‘little groups’. It follows that some 1rs of CB are controlled
by the 1Rrs of the ‘A4, D, £’ series of finite symmetry groups of regular polygons and
polyhedra in ordinary euclidean 3-space. Possible applications to quantum gravity
are indicated.
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272 P.J. McCarthy

1. Introduction

In 1939 Wigner published a remarkable paper which laid the foundations of special
relativistic quantum mechanics. He chose, as starting points, only the most firmly
established experimental facts and theoretical principles, so that his work was
entirely free of ad hoc assumptions. In particular, no assumption was made that
relativistic quantum systems should be described by differential equations. In fact,
the set of states of a quantum system was identified with the projective space P(H) of
complex straight lines, through the origin, of a complex Hilbert space H. Physical
measurements were identified with transition probabilities, given by a ‘probability
function’ 7: P(H) x P(H) -> [0, 1]. The relativity principle was expressed not through
‘covariance ’, but as the numerical invariance of all transition probabilities under all
Poincaré transformations of affine Minkowski space (translations included).

Among Wigner’s results were a complete classification of all relativistic invariant
systems in terms of irreducible unitary representations (1ks) of the (covering group’
of the) Poincaré group in H. These 1Rs were, in turn, identified with elementary
particles, and shown to be parametrized by mass and spin. Especially interesting
from the perspective of the present day is that Wigner’s work describes, completely
explicitly, the set of all possible solutions of all possible (specially) relativistic wave
equations (without having to find or solve the equations!) in a form free of all
constraints. These solution sets are, in fact, precisely the Irs of the (cover of the)
Poincaré group.

The Bondi-Metzner—Sachs group (BMS group) B was discovered by Bondi et al.
(1962) for axisymmetric systems, and by Sachs (1962a) for general systems, and. is
the best candidate for the universal symmetry group of general relativity. As such,
it quickly attracted attention as an approach to quantum gravity, or quantum
theory with gravity, or the problem of ‘internal symmetries’ (Sachs 1962b; Komar
1965; Newman 1965). With these motivations, a study of 1rs of B was started by
Sachs (19625), and taken further by Cantoni (1967 a, b).

Wigner’s work for special relativity, and the universal property of the BMS group
for general relativity, make it reasonable to attempt to lay a similarly firm
foundation for quantum gravity, or for quantum theory with gravity, by following
through the analogue of Wigner’s programme with B replacing the Poincaré group.
Some years ago I constructed explicitly the 1rs of B for exactly this purpose. This
work was based on G. W. Mackey’s pioneering work on group representations (see,
for example, Mackey 1968, 1978); in particular, an extension to the relevant infinite-
dimensional case of his semi-direct product theory. (It is interesting that one source
of Mackey’s work was his extension of the Stone-von Neumann theorem, which is the
cornerstone of quantum mechanics). The role of the irs of the BMS group B is,
however, much less well understood than the role of Wigner’s 1rs. This paper is the
starting point of an attempt to make this role better understood, and to relate the
group theoretical approach more closely to other approaches to quantum gravity.

The 1rs of B may well already be related to other such approaches. For example,
certain of these TRs turned out to be induced (in a sense generalizing Mackey’s) from
the 1Rrs of the finite symmetry groups of the planar regular polygons or of the platonic
solids in ordinary euclidean 3-space. That is, certain 1Rs of B are induced from the
(complex linear) irreducible representations of the cyclic or dihedral groups, or the
symmetry groups of the tetrahedron, cube or icosahedron (McCarthy 1973a). More
precisely, the 1rs concerned are actually 1rs of the corresponding binary groups. (In
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a finer topology for B, infinite discrete groups and distributions also appear
(McCarthy 1975).)

Years later, a completely different approach to quantum gravity by several
authors led to a study of gravitational instantons, both for the euclidean and
complex versions of general relativity. These instantons are a class of asymptotically
flat solutions (or at least, locally so) of the self-dual Einstein equations. In the
euclidean case, they play a key role in dominating the path integrals (of a Feynman-
like approach to quantum gravity), and are obtained by first isolating the self-dual
Einstein equations, and then finding exact solutions to these equations. It turned out
that these euclidean instantons were also controlled by the same finite symmetry
groups of polygons and platonic solids. In the most recent stages of this work, it has
been shown (Kronheimer 1986, 1989, b) that the parametrization of the instanton
solution spaces (moduli spaces) intimately involves the irreducible representations of
these same finite symmetry groups (and not just the groups themselves).

At the outset of this approach to quantum gravity, there was no reason whatever
to suspect that these particular finite groups, much less their complex linear
irreducible representations, should have anything to do with gravitational instantons
(which solve the real nonlinear euclidean self-dual Einstein equations). The instanton
solution spaces have been beautifully described (in terms of Brieskorn’s semi-
universal deformations of singularities arising from the finite groups acting in C?).
However, the description involves constraints; a constraint free description is, as yet,
unknown.

The 1rs of these finite symmetry groups of polygons and polyhedra are related
(McKay 1980) to the series 4,, D, and E, (= Eq, E,, E;) of simple Lie algebras. This
A, D, E series appears unexpectedly in a wide variety of completely different (and, at
least apparently, unrelated) areas of mathematics. For example, it appears in
singularity theory for functions (Arnol’d 1972, 1981), the theory of quivers in linear
algebras (Gabriel 1972), and the theory of caustics (Arnol’d 1984). The two
approaches to quantum gravity (via BMS Irs and via euclidean instantons)
mentioned above could hardly be more different. The former starts with an infinite-
dimensional group (the symmetry group B of the theory) and a Hilbert space only
(no equation is postulated or solved), and directly constructs the required data in the
form of irreducible BMS representations. The latter starts with the self-dual Einstein
equations (no symmetry groups or transformation properties are assumed), and
constructs the moduli space of solutions of these equations in a simple, but still
constrained, fashion. Nevertheless, each approach turns out to be controlled by
complex linear 1Rs of the same finite symmetry groups of polygons or polyhedra.
There are two possible reasons for this. Either the 4, D, K series is so all-pervasive
that the simultaneous appearance here is merely a coincidence, or the two
approaches, in similar contexts (asymptotically flat space-times, quantum gravity)
are deeply related.

To try to decide between these reasons, it is evidently essential first to relate the
contexts of the two approaches as closely as possible. Gravitational instantons
appear in a complexified or euclidean version of general relativity, but BMS 1rs have
only been investigated in real lorentzian space-times. Are there complex or euclidean
analogues of B? If so, how are these new groups related to each other and to B? What
are the IRs of these new groups? Quite apart from the possible link with instantons,
these questions are of much independent interest. Indeed, their answers are part of
a direct and reliable group theoretic approach to quantum gravity.

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

\
\
8 \
i

a
//\

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A \
)

[

y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

274 P.J. McCarthy

It is worth remarking that the finite 4,D,E groups (‘little groups’ of B) only
appear in general relativity as a consequence of the infinite dimensionality of the
symmetry group B of the theory. The corresponding ‘little groups’ of the Poincaré
group are all of infinite order (they are three-dimensional connected Lie groups); this
is a consequence of the fact that, for special relativity, the symmetry group (the
Poincaré group) is finite dimensional (it is a 10-dimensional Lie group). Only the
additional complexity of general relativity gives rise to the finite groups of polygons
and polyhedra.

In this paper, I show that there are complex, euclidean and several other analogues
of B; indeed real ones in any signature, and I investigate their 1Rs, going into
particular detail for the complexification CB of B itself. In §2, earlier variants of B
are discussed. In §§3 and 4, a wide variety of analogues of B are constructed and
described, and their structures and inter-relationships discussed in detail. In §5, the
structure of CB carefully described, together with the action which specifies it as a
semi-direct product. Section 6 treats the theory of 1rs of all of these groups in general,
and §7 the 1rs of CB in particular. The main reason for the prominence of the 4, D,
E series for B was that the ‘little groups’ for the irs of B are compact (McCarthy
1973 a). This is in contrast to the little groups of P, some of which are non-compact
(namely, those for zero or negative mass squared); these give rise to the possibility
of continuous spins in special relativity (Wigner 1939). The compactness result for B
only allows discrete spins (McCarthy 1972 a), as observed in nature. It is as though the
presence of gravity obstructs the unphysical continuous spins of special relativity.
That is, gravity gives a possible explanation for the observed discreteness of
elementary particle spins.

In §7 I show that a similar (entirely unexpected) result also holds for CB; all 1rs
of CB are induced from compact little groups. This means that the 4, D, K series is
just as prominent for CB as it was for B; in fact, the series is, in a sense, more
prominent for CB. Section 8 is devoted to some brief remarks about the euclidean
analogue KB of B, and §9 exhibits CB as a ‘classical’ transformation group of
symmetries of the complexified null infinity C#*. The paper closes with some brief
historical remarks in §10.

The theme of this paper started with an SERC grant application (GR/¥F23613) by
the author in September 1988, followed by a second application in February 1989.
This was followed by an earlier (unpublished) version (No. 89A59) of the present
paper (McCarthy 1989), the title of which is given in the References below.

2. Previous variants of the BMS group

In the first derivations of the BMS group (Bondi et al. 1962; Sachs 1962«a), B was
found as a transformation pseudo-group (of asymptotic isometries) of the asymptotic
region of asymptotically flat lorentzian space-times. However, Penrose (1963, 1974)
showed that B could be derived as an actual transformation group of the boundary
St (future null infinity) of these space-times. In Penrose’s terminology, B is precisely
the symmetry group of #* in the sense that it is the automorphism group of the
‘strong conformal geometry’ of #*. An account of this is given in Penrose & Rindler
(1986). The characteristic feature of B is that it contains an infinite-dimensional
abelian normal subgroup 4 of so-called ‘supertranslations’, defined below.

Now, supertranslations and complex self-dual solutions of EKinstein’s equations
(‘complex instantons’) are related by the s -space methods of Newman and others

Phil. Trans. R. Soc. Lond. A (1992)
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(Newman 1976 ; Hansen et al. 1978 ; Ko et al. 1981). These methods, in effect, perform
‘complex supertranslations’ on the complexification C#* of £ to define ‘good cuts’
(that is, shearfree cuts of #*). By restricting attention to complexified super-
translations and shears which are holomorphic in a neighbourhood of #* < C#,
Newman was able to give a remarkable formula, in the form of a contour integral,
for a metric on the resulting space # of good cuts. Remarkably again, this metric
turns out to be a general holomorphic self-dual solution of the complex (vacuum)
Einstein equations, or ‘complex instanton’. (A brief discussion of this is given by
Penrose & Rindler (1986).). It is fascinating to note, in the context of the present
paper, that Hitchin (1982) has related Newman’s ‘good cut’ equation (describing a
complex instanton) to the Eguchi-Hanson (Eguchi & Hanson 1978) metric, which is
the first and simplest euclidean instanton in the class mention above. (See
acknowledgements at the end of this paper.) In fact, Hitchin solved the good cut
equation for the Eguchi-Hanson metric.

Now, holomorphic complexified shears and supertranslations inevitably develop
singularities outside some neighbourhood of #* < C#7, and this leads to domain
problems in defining the complexification CB of B. For this reason, although a local
holomorphic version of CB is implicit in this # -space work, a global definition of CB
has not, as far as I am aware, been given. Here I propose, rather, to concentrate on
B as an abstract group, and to obtain the complexification directly, without
requiring holomorphicity. This direct approach leads to a C® rather than a
holomorphic complexification, which is globally defined, but no longer closely tied
to the contour integral formula mentioned above. However, it enables one to find the
relationships between the various real and complex versions of B globally, to study
classical global actions, and to investigate Hilbert space IRs for the quantum
problem. Thus, in the spirit of Klein’s Erlangen programme, the geometries,
symmetries and elementary quantum systems can all be studied from a single point
of view. It seems likely that these actions and 1rs will be closely linked with the other
approaches.

Some time ago (McCarthy 19726) I described B in a global form which turns out
to be suitable for this global C° complexification. In the same paper, I derived, for
pedagogical reasons, a two-dimensional euclidean analogue of the BMS group. A
calculation similar to the two-dimensional one shows that there is a four-dimensional
euclidean BMS group EB which preserves the asymptotic form of 4-metrics of the
form

ds* = (d,,+h,,) da* da’.

Here the a* are the usual cartesian coordinates on R* (x=0,1,2,3 and the
summation convention is used), d,, is the Kronecker delta, and

h/LV = 0(7’_1),
where the order symbol has its usual meaning, and r is the usual radial coordinate :
r2= 3 (22
#=0

The details of the derivation of this group £B are given in an earlier (unpublished)
version of the present paper (McCarthy 1989). EB turns out to involve ‘super-
translations’ which are arbitrary C® functions on 83, in contrast to B, which

Phil. Trans. R. Soc. Lond. A (1992)
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involves arbitrary C* functions on S%. Also, Ashtekar & Hansen (1978), in examining
both spacelike and null infinity for real lorentzian space-times, derived a BMS-like
group based on the unit spacelike hyperboloid (see also acknowledgements below).
Like EB, this group also involves arbitrary C* functions of three variables; indeed,
on the hyperboloid. The next section is devoted to a unified description of these and
other groups of similar type, together with their complexifications, by means of a
general construction extending the construction of B given in McCarthy (19725).

3. Real and complex BMS groups
(@) Real groups
Let R7? denote the real vector space with scalar product of signature (p,q) for
p+q =4 (with p pluses and ¢ minuses), and L(p,q) the corresponding ‘Lorentz
group’ SO (p, q) of linear transformations preserving the scalar product. (Through-
out, I consider only identity components of continuous groups; space or time
reflection are excluded.) Thus R*? is euclidean space, R* ! is Minkowski space, and
R?*? is the so-called ultrahyperbolic space, with scalar products
Rll,(]: xy — xOyO +x1?/1 +x2y2 +x3y3’
R 1: Xy = xoyo—x1y1~x2y2—x3y3,
R%2: xy = x°y°+x2y2—x1y1—x3y3,
these particular expressions being convenient here. Matrices A€ L(p, q) are taken as

acting from the right on row vectors xe R? 9. Let K denote any subset of R?¢
invariant under L(p, ¢q) and also under the dilatation action

R* x BP9 RBP4, (¢, x)tx

of the multiplicative group ®* of positive real numbers. Let 4(K) be the vector space
(under pointwise addition) of all C° functions f:K — R satisfying the homogeneity
condition

fltx) = tf(x), all teR*.
Define a representation 7' of L(p, ¢) on A(K) by setting, for each A€ L(p,q),
(T(A)f) () = f(aA).
Now let B”'4(K) be the semi-direct product
B U(K) = A(K)® 7 L(p. ).
Thus the group law for pairs in 4(K) x L(p, q) is
(fi: A1) (for 4y) = (fy +T(A4y) fo, Ay Ay).

The normal subgroup 4(K) is, by analogy, called the supertranslation subgroup.
If K is the future pointing null cone in Minkowski space, defined by

then B®!(N*) is the original BMS group B, since the above construction then
specializes to the one given in McCarthy (19726). If K is the set S of all spacelike
vectors, defined by

S={xeR>|x x <0},

Phil. Trans. R. Soc. Lond. A (1992)
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then B*1(S) is easily shown to be isomorphic to the group defined by Ashtekar &
Hansen (1978). If, in euclidean space, K is the set

R*—0 ={xeR*°|x # 0},

then B*°(R*—0) is isomorphic to the four-dimensional euclidean BMS group EB
mentioned above, and derived in McCarthy (1989). Thus the construction of the
previous paragraph subsumes all real groups of BMS type which have so far been
derived.

However, it is considerably more general. Indeed, any K invariant under L(p,q)
and R* is a disjoint union of orbits of B* X L(p,q) in RB? 2. These orbits are easily
classified in the various cases. In all cases, the origin {0} is an orbit, but since 4({0})
is just the zero function,

BP1({0}) ~ L(p, q).

That is, there are no supertranslations in this case; it is henceforth discarded as
trivial. For ®*°, then, there is only one orbit, *—0, giving

EB ~ B%(R*—0) = A(R*—0)® , L(4, 0).
For R*! there are five orbits, namely
Tt ={xeR> |z x> 0,2°> 0},
T ={xeR |z x>0, <0},
Nt ={xe Rz 2x=0,2°> 0},
N ={xef |z z=0,2"<0},
S={xeR>|z x <0}
For R?*? there are three orbits, namely
T={xeR*? x x>0}
N={xeR*>?*|x x =0},
2={xeR*?|z 2 <0}
In each case, then, K can be any disjoint union of these orbits.
Evidently, for each signature, the collection of possible Ks is partly ordered by

inclusion maps, and there are corresponding restriction maps for the 4(K). So, if K
is a disjoint union K = L U M, the inclusion

Lo LuM
corresponds to restricting functions fe A(L U M) to the subset L, giving a map
AL U M)—A(L)
which, in general, is not onto. Correspondingly we have a map
B? YL U M) B YL).

In particular, in any signature, we may take for K the union R*—0 of all orbits.
It is appropriate to call the resulting groups universal, since each of them sits at the
top of a lattice like structure defined by the restriction maps. 1 write, for these
universal groups,

BP4(R*—0) = UBP-1,
Phil. Trans. R. Soc. Lond. A (1992)
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278 P.J. McCarthy
Since, for R*°, this is the only group, it is already universal;
EB = B*°(R*—0) = %4B*°.
For the ultrahyperbolic space B* 2, we have
R*—0=TUNU 2,

and hence the diagram (dropping the superscripts from the lower groups)

UB*?

B(NU2X) BXuT)

which iIlVOlVGb seven groups in all (one appears twme in the bottom row). The
diagram for #B*' may similarly be obtained from the disjoint union

R*—0=T*"UN" USUN UT.

There are, in all, 31 groups of type B* '(K), with a corresponding diagram containing
UB*' at the top.

If K is a single orbit, it is appropriate to call B?'4(K) atomic, otherwise compound.
For all three signatures, then, there is a total of 39 groups B? ¢(K). Nine of these
groups (including the original B) are atomic, and 30 are compound. Three of them are
universal (one for each signature). Only one, £B, is both universal and atomic.

Each of the 39 groups has an infinite-dimensional 4(K), and each contains the
‘Poincaré group’ of appropriate signature. Indeed, restricting A(K) to the four-
parameter family of linear functions of the form f,(z) = x-v where v e R* is a constant
vector and dot the appropriate scalar product, the L(p, ¢) action on A(K) specializes
to an action corresponding to (4,v)+ Av on R*. This gives the Poincaré group

PPt = R'®qp Lp.q)

in the signature concerned. That is, specializing the nonlinear functions fe A(K) to
linear ones gives the group of special relativity. Thus we may say that ‘linearizing
the (general relativity) BMS groups gives the (special relativity) Poincaré groups’.

It should be noted that, in the original physical context of asymptotic symmetry
groups (gravitational radiation), those new groups above which involve timelike
orbits are unlikely to be of direct physical significance (they would presumably refer
to tachyonic radiating matter). However, they are likely to be of indirect significance,
probably via their complexifications (see next subsection).

(b) Complex groups
The above construction can now be complexified as follows. First note that, if the
coordinates a* are now all taken complex, the various scalar products mentioned
above all become equivalent (under the maps obtained by multiplying coordinates
by i). The complex ‘Lorentz groups’ preserving any one of these scalar products are

Phil. Trans. R. Soc. Lond. A (1992)
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all isomorphic, for the same reason. So we may replace B” ¢ by C* and L(p, q) by CL
this being the complex group preserving (for example)
X y — xOyO _xlyl — x2y2 — x3y3

with the z* all complex.
Now let /" be any subset of C*, apart from the origin, invariant under both CL and

also the action
C*x C*—~C*; (t,x)tx

of the multiplicative group C* of non-zero complex numbers. Let CA(XA") be the
vector space, under pointwise addition, of all C*° functions f: A" — C satisfying the
homogeneity condition

ftx) =1tf(x), all teC*.

Here C° means that, considered as a map on the real spaces (of twice the dimension)
underlying " and C, fis C® in the usual real sense. Define a representation 7' of CL
on CA by setting, for each A€ CL,

(T(A) f) (x) = f(xA).
Now let CB(A") be the semi-direct product
CB(A )= CAA)®,CZL.

Groups of this form are the required complex BMS groups.
In this context, there are only two orbits of C* x CL, namely

N ={xeC*axx=0,z# 0},
M ={xeC*|x x # 0}
Hence there are exactly three complex groups of BMS type, namely
CB(A"), CB(M), CB(C*—0).
Since C*—0 = A" U 4, it is appropriate to call the third group universal; I write
UCB = CB(C*—0).
The first two groups are atomic, and the restriction diagram is very simple:
UCB
SN
CB(A) CB(M).
Evidently % CB, which is compound, is the complexification of each real universal
group. The atomic group CB(A4) is the complexification of each of the groups
B»Y(NT), B>Y(N"), and B 2(N). Finally CB(.#) is the complexification of each of the
groups B> Y1), B>Y(T), B>(S), B>*(T) and B**(2).

The obvious complex version of the linearization restriction of B?¢(K) to PP-?
gives, for any CB(X'), the complex Poincaré group CP defined by

CP = C'®, CL.

It is interesting to note that, for special relativity, all Poincaré groups are universal
in the following sense. There is exactly one complex Poincaré group, and, in each real
signature, exactly one real form for this group. This section shows that the position
is much more intricate for the asymptotic symmetry groups of general relativity.
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4. Other models for the groups
(a) Projective spaces
The orbits of the dilatation action of &* on R 9 are open half-lines from the origin
in 79 = R*. For any K, let P, (K) be the projective-like space of all such half-lines
lying in K. Now 4 (K) is the set of all O functions f:K — R which are homogeneous
of degree 1; we may write
AK) = CP(K, R).

Since the homogeneity constraint fixes the behaviour of these functions along half-
lines, A(K) may also be realized as the set of all arbitrary (unconstrained or ‘free’)
C* functions on P, (K):

AK) = C=(K, R) ~ C*(P,(K), R).

The homeomorphism types of the various P, (K) are easily found as follows. Every
half-line cuts the 3-sphere S?® given by

(x°)2+(x1)2+(x2)2+(x3)2 =92
exactly once, so we have
P (K)~S8*n K.

In particular, P (R*—0)~ 8% so in each signature the universal groups can be
realized as
UBP 1~ C°(S®, R)® p L(p, q).

Here and below, the actions (also called 7') of L(p, q) on the spaces of free functions
are easily found, and will be given in detail for CB. Using the definitions of the
various orbits K, one easily finds the following table of homeomorphism types of
P.(K)~S*nK:

K Tror7T~ S NtorN TorX N
P(K) D*  S*xI 8t S§'xD? SixSU

Here D"*! is the interior of a solid n-sphere S” (so D"*1 ~ R"*1) and [ is an open
interval of K. If K is a disjoint union of orbits, K =1L U M, then we have a
corresponding disjoint union for the half-line spaces; P (K) = P, (L) U P,(M). This,
then, realizes all of the real groups with the supertranslations now unconstrained ;

B YK) = CO®(P(K), R)® , L(p,q).

The following cases of this realization are of special interest;

B =B*\(N*) ~ C°(S%, R)® , L(3, 1),
EB = B5Y(R*—0) ~ C(S%, R)® , L(4, 0),
B¥Y(S) ~ C°(8*x [, R)® 5 L(3, 1),
HB = B*}(N) ~ C°(S* x 8', B)® , L(2, 2).

Indeed, the first three are the groups mentioned in §2. The last one, here called HB
(for ‘hyperbolic BMS group’) is, like B itself, based on a null cone, and it has the
same complexification CB(A”") as B itself. It is also interesting to note that the
complexifications of the first three groups give all of the complex BMS groups,
namely CB(A"), UCB = CB(M U A") and CB(.MH).
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In a similar way, the complex supertranslation groups CA(X") of C* homogeneous
functions f:# — C may be realized as the set of all (free) C* functions on the
corresponding complex projective space P(H#") of C* orbits in . That is, P(X") is the
space of all complex straight lines through the origin which lie in 4. And we have

CA(A ) = C°(A,C) ~ C*(P(X), C).
This realizes the three complex groups of §3 as
UCB ~ C°(Py(0), O)® , CL,
CB(M) ~ C°(P(M), C)® , CL,
CB(N') >~ C*°(P(N), C)®  CL.

() Double covers

In quantum mechanics, groups initially act in the projective Hilbert space P(H) of
quantum states, so their representations are projective rather than linear (Wigner
1939). In lifting to H itself, one is forced to pass to the double cover P, of the Poincaré
group P. In fact, this is the real reason that spinors appear in relativistic quantum
mechanics. Correspondingly, for B, it is really unitary representations of the double
cover B, (McCarthy 1973a, 1975) which are relevant in quantum mechanics. Also,
the structure of the groups themselves is most simply described via these double
covers.

First I recall the definition of CL,. Let M(2, C) be the set of all 2x2 complex
matrices, and let

SL(2,C) ={geM(2, C)|detg = 1}.
SL(2, C) is a matrix group, sometimes denoted (¢ below. Define a right action of
G?=GxG on M2,C) by M2, C)x G*~>M(2, C) with
(m. (g, k) =g mh,
where the superscript T means transpose. Consider the map s: C* ~M(2, C) defined
by
( _ xO — x3 xl + ixZ
s@) = wt—ix? a4t |

where the 2* are the components of z € C*. This map is a linear bijection, so the right
action of G2 on M(2, C) induces a linear right action of G* on C*. Since

det (s(x)) =2 2

and the G2 action preserves determinants (indeed det g = deth = 1)in M(2, C), G* acts
as linear isometries on C*, that is, as transformations from CL. In fact, this
construction gives a homomorphism

v:Gx G- CL,

which in onto, and has kernel {(Id, Id), (—Id, —Id)} in G x G. Thus y identifies G' x ¢
as the double cover of CL
GxG=CL,

and in fact G x G is the universal cover.
The covering groups of the various real forms of CL are easily described by making
appropriate restrictions. For L(4,0), take a° real and z',2*, 2° pure imaginary, and
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restrict both g and % to be arbitrary unitary matrices. For L(3, 1), take all the x* to
be real, and restrict (g, k) to pairs of the form (%, 4) for arbitrary he@. For L(2,2),
take a0, 2!, 2® real and x? pure imaginary, and restrict g and & to be arbitrary real

matrices. This gives the double covers of the L(p, q);

SU(2) x SU(2) = SU(2)* = L(4,0),,
SL(2,C) =G =L(3,1),,
SL(2, B) x SL(2, R) = SL(2, R)* = L(2,2),,

where SU(2) (SL(2, R)) is the subgroup of G of unitary (respectively, real) matrices.
Letting the appropriate groups act via the covering map y composed with 7', we

get the corresponding covering groups for the BMS-type groups. The results may be
summarized in

Theorem 4.1. The covering groups of the groups given in §3 have the form

BPU(K), = CY (K, B)® 1 L(p. q).

= C?(P(K), B)® 1 L(p. q)..
CB(A ), = OFP(AH, O)® p CL,

= 0°(P(A), CO)® CL,,

where L(p, q), and CL are as above.

Strictly speaking, in the theorem, ‘7" should read ‘7" ’, but the notation is simpler
as above.
In particular, the theorem gives the following special cases:

UCB = O*(P,(0), O)® , (G x G),
UBP9 = (8%, R)®  L(p, ).,
B, = B*'(V%), = 0°(S%, R)® G,
EB, = B""(R*—0), = C*(5*, B ® ; (SU(2) x SU(2)),
o = O
e = C2(8

B> (S 2, R)®, 6
HB, = B®*N S'x SR )@T(SL(2, R) x SL(2, R)).

The third group in this list is now in the form in which representations were
investigated in McCarthy (1973a, 1975). Also, we have

CB(A'), = C2(P(A), O @ 1 (G x G)

for the complexification of B, (or of HB,); this complex group is described in detail
in the next section.

‘1
¢ /
‘1

c

5. A close-up for CB(.A"),

Since this group is especially important for quantum gravity, and for the possible
links to other approaches, I here go into considerable detail in describing the
structure. The first part of this section is essentially identical to §3 of McCarthy
(1989).

(@) The complex projective null cone

The complex null cone 4" may be identified with its image in under the linear
bijection s of §4;
={meM?2, C)|m # 0,det m = 0}.
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Hence me A" if and only if m has rank exactly 1. Set & be the set of all non-zero
complex two-component row vectors; & = C*—0. In Penrose’s terminology, & is
‘spin space’. From the rank condition, it follows that m e 4" if and only if

m = z'w
for some pair (z, w)e¥ x & = 2. Let m be the projection m: %2 A" given by
m(z, w) = 2%w.
Then the following result gives 4" in terms of 2.
Proposition 5.1. Define a left action C* x F*— F* by
(A, (z, W)= (Az,A7'w).

Then this C* action is fixed point free, and the C* orbits are precisely the fibres of the
projection

mLE> N
Thus we have the identification

N > CH\ (P x &).

In other words, the map m defined by m(z,w) = 2™ concretely realizes the principal
bundle m: S —> N with structure group C*.

Proof. If (Az,A7'w) = (z,w), then in particular, z; A = 2z, and z, A = z,, where z, and
z, are the components of z. But z, and z, do not both vanish, so A = 1 and the action
is fixed point free. If (z', w’) and (z, w) belong to the same orbit, z’ = Azand w’ = A™'w
for some Ae C*, som(z/, w') = z"w’ = zTAA'w = zTw = 7(z, w), so the pairs belong to
the same fibre. If the pairs belong to the same fibre, 7(z", w') = m(z, w) gives

7w = 7%w.

Post-multiplying by the hermitian conjugate w*, of w gives z'T(w'w*) = z"(ww*).
But w # 0, so the real norm (ww*) # 0, and since z* # 0, the number (w'w*) cannot
be zero. Hence z’ is a non-zero complex multiple of z, z” = Az. Taking the transpose
of the equation gives, similarly, w’ = uw, u # 0. Putting these into the equation then
gives Au =1, so (z/,w) = (Az, A™'w) and the pairs belong to the same orbit. This
completes the proof.

On the other hand, the complex projective null cone P(A") is the space of orbits

of the action
C*xX N >N (t,n)—>tn

and so we have a second C* action, also fixed point free, defining a principal bundle
N — P(A"). Combining the projections

S>> N —>P(N)

evidently corresponds to combining the C* actions to give a C* x C¥ action on
& x &. Indeed, since n = z™w, tn = {zTw, we can take the combined action as

(¢, A), (z,w)) = (tAZ, A" w).

But, writing tA = o and A7 =7 (so t = oA™!, A = 77) this latter action is equivalent
to the C* x C* action given by

(o, 7), (2, W) (0Z, TW).
Phil. Trans. R. Soc. Lond. A (1992)
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Hence the base P(.4") is the set of orbits for this last action, namely
P(NV) = (C*x C¥)\(¥ X F) ~ (C\F) x (CK\F) ~ P(C) x P(C) ~ S*x 8%

Here P(C), usually denoted P,(C), is the one-dimensional complex projective space,
or Riemann sphere S?. Hence we have

Proposition 5.2. The composite preyjiclion
L N > P(N)
of the two principal C* bundles above gives a principal C* x C* bundle
I xF - P(C)x P(C) = P(AN)
with action defined componentwise.

Remark 5.3. A closely related composite projection is &% — P(¥?)— P(C)?, which
may be obtained by combining the actions (¢, (z, w))— ({z,tw) and (A, (z, w)) = (Az, w).
This may well also be useful.

We can now use these results to give a concrete realization of CA by means of
homogeneous functions on & x &.

Proposition 5.4. Let OF (%*, C) be the sel of functions yr:S*— C satisfying the
homogeneity condition

Yoz, 7w) = ory(z, w), all (o, 7)€ C* x C*.
Then we have the following identifications :
CAN) = CP(N,C) = C*(P(N), )
~ 07 (&2, C) ~ C*(P(C)?, O).
Proof. The identification of the first three spaces is either by definition, or has been
given in §4. Given yreCP,(¥?, C), putting 7= 0" in the homogeneity condition

gives, for all oe C*,

Yoz, o7'w) = y(z,w).

But this is precisely the condition that i is constant on each C* orbit of Proposition

5.1, so
Yz, w) = f(z'w)
for some C* function f. Putting 7 = 1 in the homogeneity condition, and writing
n =z w, gives
flon) = foztw) = Y0z, w) = o) (2. w) = of (2"W) = of (n).

Hence fe O°(A", C). Similarly, each feC{ (A", C) defines an element of C'?, (2, ©),
and this correspondence is easily seen to be a bijection. The final identification
follows from the fact that P(A") ~ P(C)?. This completes the proof.

The group action of G on 4" needed to specify the semi-direct product CB(A"),
is the restriction to 4" of the G* action of §4 on M(2, C). Since the points ne A" are
of the form n = z"w, the required action A" x G2~ A" is given by

(2'w, (g, h)) g 2" wh = (29)" (Wh).
That is, it is induced by the action % x * - .% with
((z,w), (g, h)) = (29, wh).
Phil. Trans. R. Soc. Lond. A (1992)
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These results may be summarized in
Theorem 5.5. The group CB(A"), may be realized in the following way :
CBN), =~ 7, (2 O @4 67,
where CF ((F2, C) is the set of O functions r: S* — C satisfying, for all (o, 7)€ C* x C*
Yoz, 7w) = o1 (2, W)
and the representation T of G* is given by

(T(g, b)) (z, w) = Yr(zg, wh).

(b) Unconstrained supertranslations

In considering representation theory, it is convenient to work with the realization
of CA(/) in terms of unconstrained functions, that is, with the realization as
CO(P(N), C) ~ C*(P(C)?, C). The (small) price to be paid for ‘free” functions is that
the coordinates become local, but even this can be overcome by using four charts
rather than one.

So I now introduce convenient local coordinates into &. These are chosen to be
compatible with the coordinates used for B in McCarthy (1973 a, 1975) and elsewhere,
and to make the action of the maximal compact subgroup SU(2)* of G* as simple as
possible.

Given ze &, assume that 2, # 0 in z = (2,,7,). Define a ‘length’ r(z) of z and a
‘phase’ 0(z) of z, by .

7(z) = (|2)° +12,1%)% 0(2) = 25/ l2,l-
Further define )
2=2/2, p=p@) =1/l = (P +1).

Then z can be written as a complex multiple of a vector e = e(z) which has ‘unit
length’, r(e(z)) = 1, and second component real. Indeed

7= (21.2) = 1(2,/7,2/7) = 70(2/ p(2), 1/ p(2))
and so, writing the vector in the final brackets as e(z), we have
z =17(2) 0(z) e(z).
Similarly, writing w = w,/w,, we have
w=1r(w)0(w)e(w).

Evidently (z,w) are local ‘projective’ coordinates for P(C) x P(C).
Now let ¢y € OF (&2, C). Then, using the homogeneity condition, we have

Y(z,w) = P(r(z) 0(z) e(2), r(w) O(w) e(w))
= r(2) 0(z) r(w) O(w) Y (e(2), e(w)).

Writing (e(z), e(w)) = a(z, w), this expresses (locally) every yre €7, (&2, C) in terms
of a function a e C°(P(C)?%, C) by

Y(z, w) = 1(z) 0(z) r(w) O(w) au(z, w).
To find the expression for the 7'(g, k) operators in terms of the as note first that if

ge@ is
|a b
9=¢ af

Phil. Trans. R. Soc. Lond. A (1992)
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then the components z,,z, of z transform linearly, so the ratio z = z,/z, transforms
fraction linearly. Writing zg for the transformed ratio,

(29), _za+z,c  za+tc
(2g)y, 2z b+z,d  zb+d’

g =

Hence we have
V(zg, wh) = r(zg) 0(z9) r(wh) O(wh) a(zg, wh).

The action 7" of G* on the s in Theorem 5.5 this gives an action, also denoted 7',
of G? on the as, defined by

(T(g, k) ¥) (2, w) = r(2) O(z) r(w) O(w) (T'(g, h) ) (2, ).
The last two equations give
(T(g, h) d) (za 7’0) = kg(z) 779(2) kh(w) nh(w) Ot(Zg, wh)a
where the factors on the right are defined by

k(2) = T30 _ 10l pleg) {Izb+dlz+lza+6I2}5
! 7(2) |25l p(2) 21>+ 1 ’
1(2) = 0(zg)  z,b+2,d |z  2b+d

0(z) |2,b+z,d| 2, |b+d|’

with similar formulae for k,(w) and 3,(w). Note that the last three formulae are
expressed entirely in terms of local coordinates (z, w) € P(C) x P(C). Strictly speaking,
three more local charts are needed to cover all of P(C) x P(C) (cf. McCarthy 1973a,
1975), related to the above one via (z,w™), (7', w) and (z™!,w™?), but the single one
used above will be sufficient here. Summarizing, we have

Theorem 5.6. The group CB(AN"), can be realized as
CB(AN), = C*(P(C?, O)® p G*
with semi-direct specified by
(T(g, h) @) (2, w) = ky(2) 14(2) ky(w) 1, (w) a(2g, wh).

The original BMS group B, is, of course, a ‘real form’ of CB(A"),; it is instructive
to see how. Consider the following subsets:

{z,w e XL lw=7~F,
{(g.h)eG@xGh =g} ~ G,
{(o,7)e C* x C* |7 = &7} ~ C*,
where bar means complex conjugation. Replace 7 (2, C) by the space OF (&, R)

of all O functions y:&% — R, with & the above subset of &2, with homogeneity
condition

Yoz, &Z) = adi(z, 7).
Replace the group action by
(T(9)¥) (z.2) = ¥(z9,29).
Then CP (¥, R) ~ C*(P(C), R) ~ C*(S% R) and we have
B,=C*S%:,R©®,G,
Phil. Trans. R. Soc. Lond. A (1992)
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where (T(g) @) (z) = ki(z) a(zg).

This gives the realization of B, used earlier (McCarthy 1973, 1975), and also (in the
earlier notation) K (z) = k(2).

6. Representation theory

Irreducible unitary representations (1rs) of B, were treated in detail in earlier
papers, several of which are cited in McCarthy (1975). Much of the general theory
carries over to all of the 42 groups treated in §4. For this reason, I confine attention
here to the salient points only. Let

B=AO®,L

be any one of these (covering) groups, either real or complex, where 4 is realized by
free functions, and L is the appropriate covering group L(p, ), or CL,. Thus 4 =
C*(@Q, k) where @ is either P (K) or P(#") and k is, respectively, either & or C. Thus
the unconstrained models are here being used for 4.

The subgroup 4 may reasonably be topologized as a (pre) Hilbert space or as a
nuclear space by using a natural measure on @, or, respectively, the C* manifold
structure of Q. In the product topology of A x L, % then becomes a topological group.
The structure of 4 is specified by that of the two factors, and by the interaction
between them, which is given by the action 7" of L on 4. Let A" be the set of
continuous linear functionals on 4. The action 7’ of L on 4 determines a dual action
T’ of L on A’ by setting, for each le L,

(T"(1) ¢, ) = (¢, T(IT) 1),

where ¢peA’, ae A and (¢, «) is the value of the linear functional ¢ on a€A4. 1t is this
dual action 7" on 4’ which determines the structure of the 1rs of #. In fact, one can
show that, in the nuclear topology, every Ir of 4 arises from a measure on 4" which
is quasi-invariant and ergodic for this action; for details, see McCarthy (1975).

As in earlier work, attention is here confined to measures on A’ which are
concentrated on single orbits of the L-action 7”. (The remaining ergodic measures,
not concentrated on single orbits, are called strictly ergodic.) The former measures
correspond to subsets of 4” which are ‘indecomposable’ in the set theoretic sense;
they give rise to 1rs of # which are induced (in a sense generalizing Mackey’s (see
Mackey 1968)). Now every orbit O = A’ of L in A’ can be identified with a coset space
of L. Indeed, choosing a base point ¢,€0 we have

O~ L/Lj,,

where L, is the stabilizer of ¢,€ 0. In the physics literature, L, is called the ‘little
group’ of the point ¢,€0.

Let W be an irreducible unitary representation of L, in a Hilbert space #,. The
coset space O has a unique class of quasi-invariant measures for the L-action; let v
be one of these. Let # = L*(0,v, #,) be the Hilbert space of functions yr:0 - H#,
which are square integrable with respect to v. Then, from this data, an 1r of # in #
may be given explicitly ; it is induced from the 1r of 4 ® L, given by

V(e 1) = exp [i($g, )] W(D)

in #,. Choosing a different base point for the same orbit (hence a conjugate stabilizer
L,), an 1R equivalent to W, and a different allowed » we get an equivalent 1r of 4.

Phil. Trans. R. Soc. Lond. A (1992)
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In fact, the 1rRs of # arising from measures concentrated on orbits all arise in this
way, and are determined, up to equivalence, by (1) an orbit O < 4’, (2) a class of
equivalent Irs of any little group L, of any base point ¢,€0.

(It may also be mentioned that the problem of determining equivalence classes of
IRs arising from strictly ergodic actions is practically hopeless even for locally
compact groups, and certainly for #). Explicit formulae for the induced s of # are
similar to those given in McCarthy (1975).

While topologies of the nuclear type for # have been used to give this general
theory, the induced 1rs can also be constructed for topologies of the Hilbert type.
It has been argued elsewhere (Crampin & McCarthy 1974) that the resulting 1rs are
more ‘physical’ in the Hilbert topology for #. Indeed, they appear to describe
quantum mechanical systems in asymptotically flat space-times, whereas the nuclear
IRs seem, rather, to describe ‘scattering states’ for gravitational systems. Thus, the
Hilbert topology 1rs of 4 seem closely tied to the smooth, bound gravitational source
space-times first considered by Bondi et al. (1962) and Sachs (1962a). By contrast,
the nuclear topology 1rs appear to allow unbound sources, possibly with infinite
energy, and also distributional metric solutions of Einstein’s equations (see McCarthy
1978). It is not known how to define asymptotic symmetry groups in such settings
(where the space-times need not even be asymptotically flat). Here, I concentrate on
the Hilbert topologies for the groups %.

In principle, the induced 1rRs of any one of the groups £ can be computed by
following a programme similar to the one used in earlier papers for B itself. Here, 1
investigate the Irs of the complexification CB(A"), of B. The structure of this
complexification was described in detail in §5.

It is interesting to note that a completely different group theoretic approach to
quantum gravity has been developed by Isham (1978, 1984). This fascinating work
also arrives, independently and from another point of view, at distributional metrics.
In Isham’s work, however, these metrics occupy the centre of the stage.

c

7. Compact little groups for CB(.A"),

The reason for the prominence of the 4, D, K series in the theory of 1rs of B is that
the little groups of B turn out to be compact (McCarthy 1973), for B in the Hilbert
topology. In fact, the little groups are precisely the closed subgroups of SU(2), the
maximal compact subgroup of SL(2, C), which project onto compact subgroups of
SO(3) under the covering map y:8U(2) -SO(3, R). The A, D, E related groups are
simply the finite groups of this type. There is no reason at all to suspect that a similar
result should hold for CB(A").. In this section, I show that, in fact, all little groups
for CB(A"), are actually compact. This is especially significant for quantum gravity,
because of the relationship to other approaches.

For ease of notation, I write CB for CB(A"), in the rest of this paper. Also, I
sometimes write 2 for §? x 82 and ¢ for G' x G. So, by Theorem 5.6, CB has structure

CB=0%2,0)®,9.
In analogy to B, it is natural to choose a measure A on = §% x S? which is invariant
under the maximal compact subgroup SU(2)xSU(2) of ¥ =Gx@G. It will be

convenient to use, as coordinates for 2 = §%x 82, the six components of a pair
(m,n) of unit length vectors in &3

P=8"x82={m,n)eR>x R®||m|=1,|n = 1}.
Phil. Trans. R. Soc. Lond. A (1992)
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These coordinates are related to the ‘projective’ coordinates (z, w) for = §% x 82 by
stereographic projection. The advantage is that the (m,n) coordinates are globally
defined.

The required measure on Z is given by the 4-form

dA(m,n) = du(m) A du(n),

where each factor on the right is the usual invariant (normalized) surface element for
S2. The explicit form is, for each factor,

du(m) = (dm, A dm,)/4m|my],

where m,, m,, m, are components of me R*. This formula is only valid for m, # 0,
but any cyclic permutation of the indices in the components gives another
valid expression for du(m). In projective coordinates ze P(C), the corresponding
expression is

1 dz Adz

W) = S T e
Letting mg be the transform of meS? = P(C) by ¢geSL(2,C) (so that zrzg

corresponds to m+—mg), a simple calculation gives
dpu(m)/dpu(mg) = kg(z) = ky(m).

Here k,(m) denotes k,(z), where m corresponds to z. While the expressions given for
du(m) are local, k,(m) is defined globally.

A pre-Hilbert space structure can now be given to C*(#, C) by defining a scalar
product

la, B =J a(m,n) f(m,n)dA(m, n)
P

= J a(z, w) Bz, w) du(z) A du(w),
P

where a, € C®(#, C) and the complex conjugate is defined pointwise. As for B, it is
convenient to complete the space with respect to the norm defined by the scalar
product. In the resulting Hilbert space, functions are identified whenever they differ,
at most, on a set of measure zero. Thus our Hilbert space is

L2 = [P, A, O).

Note that « € L? is non-vanishing if and only if |le| > 0, where || is the L? norm. So
we now deal with the (complete) group

CB=L*2,A,0)®, %
with the action 7 of ¥ = G X @ on the new CA = L*#,A, C) given by the same
formula as before:
(T(g, h) @) (2, w) = ky(2) 94(2) ey, () 7, (w) (29, wh).

It is well known that the topological dual of a Hilbert space can be identified with
the Hilbert space itself, so that we now have C4” ~ CA4. In fact, given a continuous
linear functional ¢ € CA’, we can write, for a € CA

(¢, o) = {p,a),

Phil. Trans. R. Soc. Lond. A (1992)
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where the function ¢ € CA on the right is uniquely determined by (and denoted by
the same symbol as) the linear functional ¢ € CA’ on the left.

The representation theory of CB is governed by the dual action 7" of 4 = (' x ¢ on
CA’ ~ CA, defined as in §6:

T'(g. h) . ap = <p, T(g™, ") ).

A short calculation, involving a simple change of variables, gives
T (g,h)p,a) =f key®(2) 77,(2) ki, *( w) G(zg, wh) oz, w) dA(z, w).
P

Since this holds for all ¢pe CA,
(T"(g, k) B) (2, w) = ky?(2) 9y (2) k> (w) 7, (w) P2, wh).

It is convenient to have the corresponding transformation law for the modulus

|9z, w)|: , _ s
I(T"(g, k) $) (m, n)| = ky>(m) ky,*(n) |¢p(myg, nh)|.

Now, this action 7" of % on 4, given explicitly above, is, like the action 7' of 4 on
4, continuous. The ‘little group’ L, of any ¢ € CA” is the stabilizer

Ly={(g.h)eGx G| T'(g,h) p = .

By continuity, L, = 4 is a closed subgroup. Clearly, if ¢ =0, L, = % and the orbit
of ¢ =0 is just the origin. The resulting 1rs of CB are trivial in the subgroup 4, and
are really only 1rs of 4. (In fact, they are just the 1rs of ¥ with which the 1nducmg
starts.) These representations are unphysical, since they describe quantum systems
of ‘zero supermomentum’; they are ignored here, as in earlier work for B.
Henceforth, then, I assume that ¢ # 0.

I now prove the following:

Theorem 7.1. Let ¢pe CA’—0 have stabilizer Ly < 4. Then this ‘little group "Ly s
compact. That is, every little group of CB is compa(t

Proof. Assume, contrary to the theorem, that L, is non-compact for some ¢ # 0.
Then L, = % must be unbounded with respect to a standard metric for 4. Indeed, L,
is closed, so if it were bounded, it would be compact, contrary to our starting
assumptlon Since ¢pe CA’, ¢ is square 1ntegrable and since (1—|@|)? = 0 gives |¢| <
3(1+19]%), |¢] is integrable. By definition, 7"(g, h) ¢ = ¢ for all (g, h) € L. Hence, for all
(9.h) 6L¢,

le’g, ) (m,n)|dA(m,n) = jl(/)mnld/\(mn)

Substituting for 7"(g, k) ¢ from above gives, after simple manipulations and changing
variables,

J; kg_‘(m) kh_l(n) I¢(m’ n)l d/\(m,n) = f l(/)(m, n)I d/\(m,n)
7 P

for all (g,%) € L. Since L, is a group, the same equation holds with (g7, A™!) replaced
by (g, h).

Write p = (m,n), y = (g9,h) and write C(y,p) = k,(m)k,(n). Then the previous
equation gives

J/(C(Y p)—1)|g(p)ldA(p

Phil. Trans. R. Soc. Lond. A (1992)
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for all yeL,. It will be shown in the Appendix that the unbounded property of L
implies that there is an infinite sequence (y,) < L pn=123, .., with the following
properties. For any given M > 0, fixed throughout the discussion, define, for each »,
the subsets P, of 2 (which depend on M) by

P, ={pe?|C(y,,p) > M},

P ={pe?|C(y,,p) < M}.
Then the Z-measure A(P,) of P, satisfies

with complements

AP,)~>1 as nm—>oco.

Since the measure is normalized and £ =P, U P;, is a disjoint union, A(P,)+
A(P;) =1 and so A(P,)—~>1 is equivalent to

AP,)—~>0 as n-—>o0.
The above integral over £ gives, in obvious shorthand notation,
[ com-nigar= a-copia
P?’L Pﬂ
Adding the same term to each side,

[ con-ngiars | war=| e-coniga

n

Now choose M = 2, giving, for all sufficiently large =,

[ war<| con-nigars| g

Py

~ [ e-comglars | apia

n

Hence, for all sufficiently large n,

quﬁld)l < 2L/ﬂ[¢|da.

Letting x(P,) denote the characteristic function of Pj, the Cauchy-Schwartz
inequality gives

| giar

Py

2

| [ xeaigiar

<( [ wewrar)( [ igear)

= AP 1817

Hence we have, for all sufficiently large =,

f 1A < 24P 1.
P
)

Phil. Trans. R. Soc. Lond. A (1992
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But A(P},) >0 as n—> 00, so the last inequality is only possible if [ |$|dA = 0. But then
¢ must vanish almost everywhere, so ¢ =0 as an element of CA’ ~ C4. This
contradicts g€ CA’—0. So Ly cannot be non-compact and the theorem is proved.

The representation 7' of (2 defining CB actually acts via the covering map y:G*—
CL, so every little group L; =% has a well-defined projection y:G*-> CL. The
theorem shows that, up to conjugacy, every L, = 4 is also a closed subgroup of the
maximal compact subgroup SU(2) x SU(2) of 4. Let m,, i = 1,2, be the projections
onto the factors of SU(2) x SU(2). Since these are closed maps, the m,(L,) are closed
subgroups of SU(2). Hence we have

Corollary 7.2. Let L, be a little group of CB, and let y:SU(2) x SU(2) -S04, R) be
the restriction of the above to the maximal compact subgroup of G*. Then, up to conjugacy,
(1) L(j) = 7’&1(0),
(2) Ly is a closed subgroup of m'(G) x my (),
where C'is a compact subgroup of SO(4, R), and G, G, are compact subgroups of SU(2).

In particular, if L, is finite, we have

Corollary 7.3. Let Ly be a finite little group of CB. Then

(1) Ly =y '(F),

(2) Ly is a subgroup of K, X F,,
where I is a finite subgroup of SO(4, R), and F\, F, are (independently) cyclic, binary
dihedral, binary tetrahedral, binary octahedral or binary icosahedral subgroups of SU(2).

This final result shows that the A, D, £ series appears in IRs of in a more subtle way
than for B. Indeed, here we get products and subgroups of products of these finite
groups. More details will appear elsewhere.

8. Some remarks on £B

In §2, T mentioned a close link between complex instantons and complex
supertranslations via the good cut equation, and in particular, Hitchin’s work (1982)
on the good cut equation and the euclidean Eguchi-Hanson (Eguchi & Hanson 1978)
metric. This suggests that euclidean instantons are closely tied to representations
of CB. The little groups of the latter are subgroups of the homogeneous part G2 =
SL(2, C) xSL(2, C), and since SL(2, C) is non-compact, some of these little groups
themselves might have been non-compact. §7 shows that, in fact, they are necessarily
compact.

Also, in §2, I mentioned the derivation of £B as the universal symmetry group of
asymptotically euclidean space-times. However, since

EB, = C°(S% R ® , (SU2) x SU(2)),

the little groups for £B, are automatically compact, being closed subgroups of the
homogeneous part SU(2)%. Concerning possible links between these representations
and euclidean instantons, I here note the following.

(i) The boundary conditions for (aALE) euclidean instantons normally require that,
as r— 0o, the metric approaches flatness faster than the rate required in §2.

(ii) For (aLE) euclidean instantons, the metric locally approaches flatness, but a
neighbourhood of infinity has topology Ix (S8*/I'), where I is a finite group of
isometries acting freely on S® (see, for example, Gibbons & Pope 1979 ; Hitchin 1979).

In the lorentzian case, in the Irs of B, the ‘supermomenta’ of the irs had a key
physical significance (Crampin & McCarthy 1974). These supermomenta have the

Phil. Trans. R. Soc. Lond. A (1992)
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same transformation law as ‘mass aspects’, as mentioned in that paper. Now these
‘mass aspects’ appear, in the Bondi-Sachs metric, as coefficients of higher powers of
(the analogue of) ! than the first (see the discussion by Bondi (1965)). Also, in
induced 1Rrs of B, the supermomenta appear as having precisely the symmetries of the
group (typically a finite polygon or polyhedral one) with which the induction starts
(McCarthy 1973b). It seems likely that analogous results will apply in the case of £B,
and will link (i) and (i) with the corresponding properties of the 1Rs.

9. The action of CB on C#*

In approaching quantum theory via symmetries,it is appropriate firstly to define
clearly the abstract group concerned, and secondly to find the possible group actions
(i.e. representations) in (projective) Hilbert spaces. This plan has been followed
above; various generalizations of B were constructed abstractly, and the 1Rrs
(especially for CB) investigated in Hilbert spaces. However, B first arose as an
asymptotic symmetry group on space-times (Bondi et al. 1962; Sachs 1962a), then
as an actual transformation group of the future null infinity #* of these space-times
(Penrose 1963, 1974). In fact, B is precisely the symmetry group of #*. It is evidently
important to examine this classical action on the space-time boundary £*, and to
find the analogue for CB.

In dealing with the abstract groups B” ¢K) = A(K)®,L it was convenient, in
specifying the action 7' if L on 4, to use the action of L on K from the right. This
avoids a plethora of group inverses. However, to agree with notations used elsewhere
(e.g. in Penrose & Rindler (1986)) for the classical action B x #"— " from the left,
it now becomes convenient to use the action of . on K from the left. So, for this
section only, I redefine the groups and quantities needed. Let ge G and write

A e e (R

z=12,/%2y, gz=(az+b)/(cz+d).

1

Now, with 7(z) = (|z,]*+[2,/*)? and 6(z) = z,/z,|, redefine
_r(gz) |az+b|2+|cz+d|2}%
ke = = (S
14(2) = 0(92)/0(2) = (cz+d)/|ez+d|.

Also write K (z) = kj(z).
With these new definitions, adapted to the left action of ¢ on one can now redefine

B,=C*P(0O),R®, 4,
where now (T(g9) &) (2) = k2-1(2) (g™ '2) = K ~1(2) (g™ "2).
Also redefine CB, = C*(P(C)?* O)®,G?,

where now the G*? action 7' is given by

(T(g, h) @) (2, w) = kg(2) 9y=1(2) k= (w) Py (w) (g2, k1),

It should be clear from this last formula why the inverses were avoided earlier.
#* can be identified with the product R x P(C), and the classical action (given by
many authors, e.g. Penrose & Rindler (1986)) may, after a convenient reformulation,

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

a
/,// \\
/

A
{ A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

"/\\
A Y

A

i \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

294 P.J. McCarthy

be described as follows. Let [u,z]e Rx P(C) = #*. Then («,g)€B, may be obtained
as the product (a, g) = («,1d) (0, g) (pure Lorentz followed by pure supertranslation).
The separate actions are, in order,

0,9) [u,2] = [K;'(2) u.gz] €S,
(e, Id) [u,z] = [u+a(z),z]eF+.
Combining the two gives
(., g) [u, 2] = [Ky'(2) u+a(gz), gz].
This last formula, then, gives the classical action Bx #*— #*. Applying a further

(B, h) gives
(ﬂr h) (a,9) = (ﬂ+T(h) a’hg)’

where T(h) o is easily checked to be given by the action 7' defining B, in the previous
paragraph.

The structure C#£* is more complicated than that of #*; it is no longer a product.
But it may still be identified locally with the product Cx P(C)%. I now give a local
formula for the action of CB on C#*, using the local identification

[u,2,w]€e Cx P(C)x P(C) = CSF*.

Let (a, (g, k)€ CB = C*(P(C)?, C)®  G*. Then the required classical action is given
locally by

(ct, (g, ) [ws 2, w] = [y (2) g (2) Ky () 773" (w0) w+ gz, haw), g2, haw].

Applying a second group element of CB, gives the correct group product. The local
action CB,x CF*— CF™" is the required complexification of B, x #*—.#* Both
actions are transitive, and exhibit B,, CB, respectively as symmetry groups of 4*

and Cs+.
10. Historical remarks

Since the topics of the BMS group, and also of the early work on gravitational
instantons, are relatively old, it seems appropriate here to make some historical
remarks. The BMS group was discovered (in restricted form) by Bondi, van der Burg
and Metzner (Bondi et al. 1962) and (in general form) by Sachs (1962a). The first Ir
was found by Sachs (19620). The semi-direct product structure of B was pointed out
by Cantoni (1967 @) and Foster (1966). The first class of 1rs was found by Cantoni
(1966, 1967 a, b), who constructed these 1rs from Irs of the Poincaré subgroup of P
of B.

The particular representation of L. on 4 which specifies the semi-direct product B
was pointed out by Geroch & Newman (1971), and in more detail by myself (19725).
Using an infinite-dimensional modification of Mackey theory, I constructed the
set, of all induced IRs in a series of papers, several of which are cited in McCarthy
(1975). Here, the polygon and polyhedral group 1rs arose, completely naturally, in
McCarthy (1973a). Some of the papers in this series were written in collaboration
with M. Crampin.

Following the analogy of Yang-Mills theory, Eguchi & Freund (1976) found a
gravitational instanton, and Hawking (1977) a related ‘many Taub-NUT’ solution.
The latter is a so called ‘ALF’ solution, asymptotically locally flat in a three-
dimensional spatial sense, and periodic in imaginary time. Kguchi & Hanson (1978)
found all 1-instanton solutions of the euclidean self-dual Einstein equations, but now

Phil. Trans. R. Soc. Lond. A (1992)
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‘ALE’ (asymptotically locally euclidean) in a four-dimensional sense, with the metric
approaching the flat metric of R*/Z,, where Z, acts by x>z, x+—x. Gibbons &
Hawking (1978) and Gibbons & Pope (1979) observed that certain ALE instantons
were controlled by the cyclic symmetry groups I of polygons, the metric approaching
the flat metric of R*/I'. Hitchin (1979) gave a twistor-related construction of these
solutions, and argued that similar constructions should apply for the dihedral groups
and the groups of polyhedra as well. Kronheimer (1986, 1989«, b) provided a
beautiful (but still constrained) description of the moduli space of all gravitational
multi-instantons, which now involves the complex linear irreducible representations
of the polygon and polyhedral groups.

In the present context, the possible link with 1rs of £B would appear to refer to
ALE rather than ALF metrics. Indeed, for £B the supertranslations are functions on
S? whereas, for the ALF boundary conditions, one would expect functions on S% x S*.
This seems to apply also to the link with CB. Further investigation of this point
would certainly be of interest.

It is a pleasure to thank Sir Hermann Bondi for his encouragement and support of this work. I also
thank Malcolm MacCallum, whose study groups in Queen Mary College have refreshed my memory
in several topics in general relativity, a research field which I had left for some time to follow other
areas of mathematical physics.

T also thank a referee or an earlier version of this paper (McCarthy 1989) for a very helpful (and
positive) report. This referee brought the work of Ashteker & Hansen (1978) to my attention, and
suggested that their group might be related to my EB, possibly via my complexification CEB. (My
earlier paper only discussed B,EB, HB, and their complexifications CB = CHB, CEB, and also
quantum gravity and the 4, D, E series.) These remarks were stimulating for my eventual
construction of a wide variety of further new groups. The same referee also suggested describing
CB as a symmetry group of C#* and including the distinction between ALE and ALF instantons. T
thank another referee of my earlier paper for drawing my attention to the work of Hitchin (1982).
Finally, I am grateful to two referees of this paper for their positive reports.

Appendix

In Theorem 7.1, a property of unbounded subgroups Ly of ¢ was used. Here the
proof is given. The standard topology of ¢ = SL(2, C) may be given by a metric
derived from the norm

1 a b
o = P+ +le+ 0y, =" leo.

Note that, for all g,,9,€G
19192l < 191l lgs- (A1)

The metric on ¥ = G x G can be defined by
Iyl = (gl + Ry, y = (g.h)eGxG.

Since L, is unbounded, there is a sequence (y,) in Ly, n=1,2,3,..., such that
ly,| = o0 as n—> oco. Henceforth, all limits refer to n - co. Therefore there are three
possibilities for the components g, and 4, in y,, = (g, »,), namely

(A) g, is unbounded and |&,| is unbounded,

(B) lg,| is bounded and |h,| is unbounded,

(C) |h,| is bounded and |g,|is unbounded.
Phil. Trans. R. Soc. Lond. A (1992)
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Passing to subsequences if necessary, we may assume, then, that

(A) lg,>c0 and |k, oo,
(B) lgu<c and [h,|>o0,
(€) Ikl <d and |g,|>oo,

where ¢ and d are positive constants.

The required result depends on the fanctions C(y,,,p) = k, Sm)ky (), v, = (gu,hy),
p = (m,n), which are positive real functions on §2x 2, and is that given any
M > 0, the subsets

P, ={(m,n)eS8*x 8k, (m)k, (n)> M} (A 2)

satisfy A(P,) > 1. Equivalently, the complements P, satisfy A(P},) 0.
Consider first the function K,: 8%~ R* defined by

K,(m) = ki(m). (A 3)

It is well known that every ge @ can be written in the form

et 0
g = uaw,a = a(t) = [ 0 e“/z]’ (A 4)

where u, we SU(2) and ¢ is real. Since, for all ¢,

alt) =Ja(—t)Jt, J= [_01 (l)}eSU(2),

we can, and henceforth will, assume, replacing u,w by wJ, J 'w if necessary, that
t 2 0 for all g in the form (A 4). It can easily be shown that K, (m) has the form, for

= uaw,
K, (m) = cosht+sinht(v-m), (A 5)

where veS* « R® is a unit vector uniquely determined by w. Note that, since the
function v-m maps S* onto the closed interval [—1,1], K, maps S* onto the closed
interval [e™, e!].

Now suppose that (g,) is a sequence in G with |g,| > 00 as n—> o0, and let ¢, =
u, a, w, be the oorresponding decompositions (A 4), with a, = a(t,), t, = 0. The
w, € SU(2) determine, in the formulae for K, (m), an infinite sequence of unit vectors
in the compact space S? = R*. Hence, by passmg to a subsequence (g,,) we may
assume that the v, converge to a limit unit vector keS8 Dropping the extra index
for the subsequence then, v, =k+a,, where a,>0 as n—>o. So v, -m=
k-m+f,(m), where |3,(m)| = |a,-m| < |a,| >0 unlformly on 8% as n— 0. Slnee the
norm of every SU(2) matrix is /2, (A 4) for g, gives |g,| < 2|a,l|, so |a,| > 00, hence
|a,|* = 2 cosht, >0 80 ¢, 00 as n—>00. So (A 5) gives

K, (m)=gen(l+k-m+p,)+3e"(1—k-m—p,)
=ien(l+k-m+p,)+v, (A 6)

say, where the second term v, on the right also tends to 0 uniformly on 82, since
e 'n—0.
Now suppose that some M > 0 is given, and let
R, ={meS*|K, (m) > M}. (AT)
Phil. Trans. R. Soc. Lond. A (1992)
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Let R;, be the complement of R, in 8*. (Note that the image of K, :S%-> R* is the
closed interval [e7%, '], so both R, and R, are non-empty for sufﬁmently large n.)
Then (A 6) gives, for mekR;,

Ltk-m+f, < 2e (M —7,). (A8)

Since e~ —0, the right-hand side 8, of (A 8) tends to 0, so k-m < e¢,—1, where
€, = 0,—p, also tends to 0. Also, for all me 8%, —1 < k-m so meR,, implies

—1<k-m<e,—1. (A9)

In fact, (A 9) also implies ¢, > 0 for all n. The surface area of S? defined by the
inequality (A 9) is 2me,. So the normalized measure is (2m¢,)/41 = l¢,. Hence the S?
measure y of R satisfies

0 < u(B) < 36,

Since ¢, >0, u(R;,)—~>0 and so u(R,) > 1.
Now suppose that possibility (A) applies to y, = (9,, k,), and define

={meS*| K, (m) > M}, T,={neS*| K, (n)> M.
Then, as proved above, u(R,)—>1 and u(7,) 1. But
R, xT, ={(m,n)e 2P|k, (m)> Mk, (n)>~/M}
< (m, m)e P |k, (m) k, (m) > M},
The latter set is, in the notation used in Theorem 7.1, P,. So R, x T, = P,, so
AR, % T,) < A(P,).

So u(R,)w(T,) < A(P,) < 1. But u(R,)—~>1and u(T,) -1, so A(P,) > 1 and A(P;)—0.
Next, suppose that possibility (B) applies; |g,| <c for all », and |A,| > co. Then
I = Uy Ay W, gives a, =u,'g,w,', so |a,| <2|g,| <2¢, so |a,/*=2cosht, < 4c?.
Hence for someb >0, 0 t, <bforalln. Hencee™® < K, (m) < e’ for all me S*. Now
let
={neS* K, (n) > M*e"}.

Then, since |A,|—> oo, u(V,) 1. Then, for each (m,n)eS*x V, we have
K, (m)>e™", K, (n)>Me"
and hence K, (m) K, (n) > M?, giving

Hence
SExV, =P, A(S*xV,) <AP,), (Sz) (Vo) S AP,)

80 wV,) S AP, <
Since u(V,)—>1, A(P,)—>1 and A(P},) 0.
Finally, if poss1b1hty (C) applies, reversing the roles of g, and %, in the preceding

paragraph again gives A(P,)— 1 and A(P},) - 0. This establishes the required result in
all possible cases.

Phil. Trans. R. Soc. Lond. A (1992)
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